kmeans原理

更新时间:2024-06-24 17:08:15 类型:其他

导语:kmeans原理如下:输入:聚类个数k,以及包含n个数据对象的数据库。输出:满足方差最小标准的k个聚类。K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距...

kmeans原理如下:

输入:聚类个数k,以及包含n个数据对象的数据库。输出:满足方差最小标准的k个聚类。

K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法。包括初始化优化K-Means++,距离计算优化elkanK-Means算法和大数据情况下的优化MiniBatchK-Means算法。

查看全部

找项目只需3分钟

  • 姓名:
  • 电话:
  • 行业:
我要创业
  • 大爱: 0

  • 喜欢: 0

  • 一般:0